VlincRNAs Provide Clues to Genomic Dark Matter | The Institute for Creation Research

VlincRNAs Provide Clues to Genomic Dark Matter

Scientists have known for several years that the human genome is pervasively copied into various RNA molecules (transcripts), although scientists have been unsure about what much of it actually does. New research shows that about 10 percent of the genome encodes a newly characterized type of regulatory molecules called "vlincRNA."1

When scientists first completed a draft of the human genome, they discovered that it only contained about 20,000 to 25,000 protein-coding genes.2 However, researchers soon discovered that these protein-coding genes produced a vast array of RNA transcript variants and that the other regions of the genome were also transcribed into RNA molecules of diverse types and categories.3 Because much of the function and purpose of this non-coding RNA was a complete mystery, it was given the label "dark matter."

One of the first types of RNA discovered that were associated with this so-called dark matter were called long intergenic non-coding RNAs (lincRNA) because they were encoded in regions of the genome in between protein-coding genes.4 These lincRNAs are typically shorter than most protein-coding genes. They also have the same regulatory and control features as protein-coding genes and produce RNA transcripts that are processed similarly with a protective cap and a regulatory tail. Functions for these lincRNAs include cell-cycle regulation, programmed cell death, and the establishment of cell identity.4

Amazingly, a new type of lincRNA sequence in the genome has recently been characterized that actually constitutes a whole new class of DNA sequence and accounts for a whopping 10 percent of the entire human genome.1 These "vlincRNAs" (very long intergenic non-coding RNAs) are much larger than protein-coding genes or standard lincRNAs; their median length is about 83,360 bases. In this new study, researchers discovered 2,147 different vlincRNAs in the human genome. When the vlincRNAs were evaluated in a variety of cell types, they were found to be associated with cell identity, developmental states, and cancer—illustrating their importance to human cell and tissue development and overall human health.

Another interesting feature of the vlincRNA discovery was the fact that the regulatory code that controlled the vlincRNA’s expression was related to features found in transposable elements—another former category of junk DNA. The importance of transposable elements in regulating gene expression and function for the genome is now becoming well-established.5

Based on the results of this study, researchers speculated that vlincRNAs work to create a scaffold in the cell’s nucleus to regulate gene expression and function for both protein-coding genes and other non-coding regulatory RNAs. Clearly, the aberrant vlincRNA profiles found in cancerous cells, compared to normal cells, illustrate their importance as key regulators of human health.

One of the most noteworthy aspects of this vlincRNA research paper was the positive attitude of the scientists reflected in their premise of looking for purpose and function in the genome. The negative fault-finding paradigm of evolution, that constantly looks for mistakes in the human genome to attribute to naturalistic processes, was conspicuously absent.

Of course, the amazing discovery that vlincRNAs entail can ultimately only be properly understood in light of intelligent-design principles attributed to an all wise and powerful Creator.

References

  1. St Laurent III, G., et al. 2013. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biology. 14 (7): R73 doi:10.1186/gb-2013-14-7-r73.
  2. International Human Genome Sequencing Consortium. 2004. Finishing the euchromatic sequence of the human genome. Nature. 431 (7011): 931-945.
  3. Clark, M.B., et al. 2011. The Reality of Pervasive Transcription. PLoS Biol. 9 (7): 9:e1000625.
  4. Ulitsky, I. and D.P. Bartel. 2013. lincRNAs: Genomics, Evolution, and Mechanisms. Cell. 154 (1): 26-46.
  5. Tomkins, J. 2013. Transposable Elements Are Key to Genome Regulation. Creation Science Update. Posted on icr.org March 27, 2013, accessed August 10, 2013.

*Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in Genetics from Clemson University.

Article posted on August 19, 2013.

The Latest
NEWS
May 2025 ICR Wallpaper
"Now may the God of hope fill you with all joy and peace in believing, that you may abound in hope by the power of the Holy Spirit." (Romans...

NEWS
Acoustic Communication in Animals
We are all familiar with vocalizations in the animal world. For example, dogs bark, birds sing, frogs croak, and whales send forth their own distinct...

ACTS & FACTS
Creation Kids: Crystals!
by Michael Stamp and Susan Windsor* You're never too young to be a creation scientist and explore our Creator's world. Kids, discover...

APOLOGETICS
Playing Chess with Little Furry Critters
God’s multifarious and marvelous designs for basic creature needs are so innovatively clever and providentially purposeful that Christ’s...

ACTS & FACTS
Credit Only Our Creator
History was my favorite subject as a young kid. But it always puzzled me when my teachers said, “We study history so that we don’t repeat...

ACTS & FACTS
Genomic Tandem Repeats: Where Repetition Is Purposely Adaptive
Tandem repeats (TRs) are short sequences of DNA repeated over and over again like the DNA letter sequence TACTACTAC, which is a repetition of TAC three...

ACTS & FACTS
Dinosaur National Monument: Fossil Graveyard of the Flood
Straddling the border of Utah and Colorado, Dinosaur National Monument (DNM) is one of the richest exposures of dinosaur fossils in the world.1...

ACTS & FACTS
The Transforming Influence of Genesis: Worker Dignity and Safety
When Pharisees questioned the Lord Jesus about marriage, He answered by quoting Genesis 1:27: “But from the beginning of the creation, God ‘made...

NEWS
Giant ''Meg'' Shark: Longer and Leaner?
Fossil remains of the giant shark Otodus megalodon have been found in Miocene1 and Pliocene2 rock layers, which ICR scientists...

CREATION.LIVE PODCAST
Searching for Truth Across the Globe | Creation.Live Podcast:...
How can we bring the Gospel of Jesus Christ and the truth of creation to others outside our small spheres of influence?   Host...