Complex Bioengineering in Blooming Flowers | The Institute for Creation Research

Complex Bioengineering in Blooming Flowers

Have you ever wondered how a plant knows when it’s time to flower? How does it know it needs to bloom and reproduce to perpetuate itself for future generations? Unlike animals, plants cannot get up and move around as a means to adjust to their environment. They have to respond to their surroundings, essentially, where they are planted. They need to have systems that sense and respond to important environmental signals such as day length, light quality, temperature, water availability, and even chemical signals emitted by other organisms.1, 2

We live in a world of seasonal fluctuations. When it comes to flowering and producing seed, timing is everything for a plant. In many climates, there are only certain times of the year when this process can occur effectively. Plants respond to both day length and temperature via an elaborate network of photoreceptors and temperature-sensing systems. These environmental response systems are further integrated into the complex internal interaction between plant hormones and carbohydrate (sugars and starches)-sensing networks.1, 2, 3

Spring’s longer days and warmer temperatures signal a variety of receptor proteins in the plants’ leaves.4 This process turns on a suite of flowering genes that produce proteins called “florigens.” These act as long-distance signals to the growing tips of the shoots, triggering flower formation.1, 2, 3

While scientists have made extensive progress in understanding the key factors and elements of the photoreceptor and hormone pathways and their roles in flowering, much less is known about the role that carbohydrates play in this process. Interestingly, recent research has shown that mutations in key genes that code for a variety of enzymes involved in sugar and starch metabolism affect a variety of developmental processes, including flowering.5 The emerging picture of bio-complexity in this field is incredible.

It is noteworthy that the carbohydrate-signaling and control system are not performed in isolation, but co-processed in complete integration with the photoreceptor, temperature, and hormone sensory signals. Amazingly, these complicated and integrated biochemical networks are deployed without the use of a central nervous system like those found in many animals.

The combination of various sensory communication and processing systems in plants, such as those involved in flowering, are a clear example of an all-or-nothing set of features. Plants would effectively fail to interface with their environment and survive if any one of these features was removed.

These new discoveries in plant biology are convincing testimonies to the intelligence of the powerful Creator who engineered these remarkable living systems. Scientific discovery increasingly exposes their complexity, which utterly defies traditional evolutionary dogma.

References

  1. Srikanth, A. and M. Schmid. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences. 68 (12): 2013.
  2. Wigge, P. et al. 2005. Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science. 309 (5737): 1056-1059.
  3. Paul, M. et al. 2008. Trehalose metabolism and signaling. Annual Review Plant Biology. 59 (1): 417-441.
  4. In some plant species, this process is triggered by longer days and cooling temperatures in the late summer and early fall.
  5. Wahl, V. et al. 2013. Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana. Science. 339 (6120): 704-707.

* Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in Genetics from Clemson University.

Cite this article: Tomkins, J. 2013. Complex Bioengineering in Blooming Flowers. Acts & Facts. 42 (4): 16.

The Latest
NEWS
May 2025 ICR Wallpaper
"Now may the God of hope fill you with all joy and peace in believing, that you may abound in hope by the power of the Holy Spirit." (Romans...

NEWS
Acoustic Communication in Animals
We are all familiar with vocalizations in the animal world. For example, dogs bark, birds sing, frogs croak, and whales send forth their own distinct...

ACTS & FACTS
Creation Kids: Crystals!
by Michael Stamp and Susan Windsor* You're never too young to be a creation scientist and explore our Creator's world. Kids, discover...

APOLOGETICS
Playing Chess with Little Furry Critters
God’s multifarious and marvelous designs for basic creature needs are so innovatively clever and providentially purposeful that Christ’s...

ACTS & FACTS
Credit Only Our Creator
History was my favorite subject as a young kid. But it always puzzled me when my teachers said, “We study history so that we don’t repeat...

ACTS & FACTS
Genomic Tandem Repeats: Where Repetition Is Purposely Adaptive
Tandem repeats (TRs) are short sequences of DNA repeated over and over again like the DNA letter sequence TACTACTAC, which is a repetition of TAC three...

ACTS & FACTS
Dinosaur National Monument: Fossil Graveyard of the Flood
Straddling the border of Utah and Colorado, Dinosaur National Monument (DNM) is one of the richest exposures of dinosaur fossils in the world.1...

ACTS & FACTS
The Transforming Influence of Genesis: Worker Dignity and Safety
When Pharisees questioned the Lord Jesus about marriage, He answered by quoting Genesis 1:27: “But from the beginning of the creation, God ‘made...

NEWS
Giant ''Meg'' Shark: Longer and Leaner?
Fossil remains of the giant shark Otodus megalodon have been found in Miocene1 and Pliocene2 rock layers, which ICR scientists...

CREATION.LIVE PODCAST
Searching for Truth Across the Globe | Creation.Live Podcast:...
How can we bring the Gospel of Jesus Christ and the truth of creation to others outside our small spheres of influence?   Host...